
Beyla performance calculation
This document is shared publicly by Grafana Labs

This document gathers all the information regarding performance implications of running Beyla
in production where a diverse set of applications are instrumented.

In the first iteration of this we are going to focus on Beyla as single process (either in
Kubernetes or not), therefore we are going to get out of the scope the following:

-​ Overhead caused by running Beyla in a Pod.
-​ Run Beyla as DaemonSet and have k8s cache functionality activated.
-​ Be exhaustive with all possible configurations of options and combinations of them.

In the present document we are running different experiments with different options activated. If
one other option doesn’t impact performance, it won’t be documented publicly. We are using the
following approach to measure the performance.

-​ Deploy Beyla in a local kind cluster using Helm (version 1.9)
-​ Deploy open telemetry demo with load generator activated

-​ This script generates traffic, between 20 and 60 requests/s, being the
/api/products the endpoint with more traffic. Since there are also requests to
redis, kafka and internal RPC, the total amount of requests can be calculated like
this.

-​ Measure performance with application_process and visualize data in Grafana.

-​ Potentially measure the performance in a different way to measure overhead of
application_process option

These are the different scenarios considered

Beyla self instrumented

config:

 data:

 attributes:

 kubernetes:

 cluster_name: kind

 discovery:

 allow_self_instrumentation: true

 services:

 - k8s_namespace: default

 k8s_daemonset_name: beyla

 prometheus_export:

 port: 9090

 path: /metrics

 features:

 - application

 - application_process

Summary:
Beyla uses around 75mb and 0.02% of CPU when only self-instrumented. Enabling application
and application_process has a minimal overhead on the memory.

Instrument Go applications (1, many, with and without load)

1 process
config:

 data:

 attributes:

 kubernetes:

 cluster_name: kind

 discovery:

 allow_self_instrumentation: true

 services:

 - k8s_namespace: default

 k8s_daemonset_name: beyla

 - k8s_namespace: default

 k8s_deployment_name: notel-demo-checkoutservice

 prometheus_export:

 port: 9090

 path: /metrics

 features:

 - application

 - application_process

Summary:

In this case the memory didn’t change, so we have memory around 78MB and CPU around
0.05%.

with traffic

Summary:

The memory stays constant but now Beyla has to process the requests, so the CPU it’s around
0.1 %, which is more or less 10x than before.

many processes

config:

 data:

 attributes:

 kubernetes:

 cluster_name: kind

 discovery:

 allow_self_instrumentation: true

 services:

 - k8s_namespace: default

 k8s_daemonset_name: beyla

 - k8s_namespace: default

 k8s_deployment_name:

notel-demo-checkoutservice|notel-demo-productcatalogservice|notel-demo-fla

gd

 prometheus_export:

 port: 9090

 path: /metrics

 features:

 - application

 - application_process

Summary:

When we instrument many processes at the same time, the memory increases dramatically (up
to 130MB in this case), but then it returns to its normal state. The CPU also stays constant.

with traffic

Summary:

The memory fluctuates, probably due some caching or metrics expiration. In this case the Go
applications are receiving traffic, therefore the CPU is more busy again, reaching levels around
0.2%

Instrument non-Go applications (1, many, with and without load)

1 process
config:

 data:

 attributes:

 kubernetes:

 cluster_name: kind

 discovery:

 allow_self_instrumentation: true

 services:

 - k8s_namespace: default

 k8s_daemonset_name: beyla

 - k8s_namespace: default

 k8s_deployment_name: notel-demo-adservice

 prometheus_export:

 port: 9090

 path: /metrics

 features:

 - application

 - application_process

Summary:

In this case, the values are pretty much the same as the case of Go.

with traffic

Summary:

In this case, the values are pretty much the same as the case of Go.

many process
config:

 data:

 attributes:

 kubernetes:

 cluster_name: kind

 discovery:

 allow_self_instrumentation: true

 services:

 - k8s_namespace: default

 k8s_daemonset_name: beyla

 - k8s_namespace: default

 k8s_deployment_name:

notel-demo-adservice|notel-demo-cartservice|notel-demo-recommendationservi

ce

 prometheus_export:

 port: 9090

 path: /metrics

 features:

 - application

 - application_process

Summary:

In this case, the values are pretty much the same as the case of Go.

with traffic

Summary:

In this case, the values are pretty much the same as the case of Go. The memory doesn’t
fluctuate like in the Go example.

Full OTEL demo with traffic
config:

 data:

 attributes:

 kubernetes:

 cluster_name: kind

 discovery:

 allow_self_instrumentation: true

 services:

 - k8s_namespace: default

 k8s_daemonset_name: .

 - k8s_namespace: default

 k8s_deployment_name: .

 prometheus_export:

 port: 9090

 path: /metrics

 features:

 - application

 - application_process

Summary:

Instrumenting the whole OTEL demo causes a peak of 600mb initially, but then goes down to its
normal levels of 75mb. The CPU increased to 0.5% utilization.

Different export modes (Prometheus, OTEL metrics, OTEL traces)

Prometheus
config:

 data:

 attributes:

 kubernetes:

 cluster_name: kind

 discovery:

 allow_self_instrumentation: true

 services:

 - k8s_namespace: default

 k8s_daemonset_name: .

 - k8s_namespace: default

 k8s_deployment_name: .

 prometheus_export:

 port: 9090

 path: /metrics

 features:

 - application

 - application_service_graph

 - application_span

 - application_process

Summary:

Using application_span and application_service_graph causes an increase of memory of 10MB
(87MB in total). The utilization increased from 0.5% to 1.2 %

OTEL traces
config:

 data:

 attributes:

 kubernetes:

 cluster_name: kind

 discovery:

 allow_self_instrumentation: true

 services:

 - k8s_namespace: default

 k8s_daemonset_name: .

 - k8s_namespace: default

 k8s_deployment_name: .

 prometheus_export:

 port: 9090

 path: /metrics

 features:

 - application

 - application_process

 grafana:

 otlp:

 cloud_zone: prod-us-central-0

 cloud_submit:

 - traces

 cloud_instance_id: user

 Cloud_api_key: key

Summary:

Using traces is more costly for the memory, as it needs to create batches (that could explain the
peaks of memory). However, it is more efficient in terms of memory as we don’t need to create
so many metrics.

OTEL metrics
config:

 data:

 attributes:

 kubernetes:

 cluster_name: kind

 discovery:

 allow_self_instrumentation: true

 services:

 - k8s_namespace: default

 k8s_daemonset_name: .

 - k8s_namespace: default

 k8s_deployment_name: .

 otel_metrics_export:

 features:

 - application

 - application_process

 - application_service_graph

 - application_span

 grafana:

 otlp:

 cloud_zone: prod-us-central-0

 cloud_submit:

 - metrics

 cloud_instance_id: user

 cloud_api_key: key

Summary:

Using application_span and application_service_graph, with a combination of OTEL metrics
causes an increase of memory of 50MB (107MB in total). The utilization increased from 0.5% to
1.6 %

Debug mode

config:

 data:

 log_level: debug

 print_traces: true

 ebpf:

 bpf_debug: true

 attributes:

 kubernetes:

 cluster_name: kind

 discovery:

 allow_self_instrumentation: true

 services:

 - k8s_namespace: default

 k8s_daemonset_name: .

 - k8s_namespace: default

 k8s_deployment_name: .

 prometheus_export:

 port: 9090

 path: /metrics

 features:

 - application

 - application_process

Summary:

Enabling debug mode causes an increase of 20/30 MB and CPU utilization around 2%.

Network observability

config:

 data:

 attributes:

 kubernetes:

 cluster_name: kind

 discovery:

 allow_self_instrumentation: true

 services:

 - k8s_namespace: default

 k8s_daemonset_name: .

 - k8s_namespace: default

 k8s_deployment_name: .

 prometheus_export:

 port: 9090

 path: /metrics

 features:

 - application

 - application_process

 - network

Summary:

Instrumenting the whole OTEL demo causes a peak of 600mb initially, but then goes down to to
120mb, which is 70mb more than without the option enabled. The CPU increased to 1.2%
(before was 0.5%).

BPF probes latency overhead
The observed latency of all combined probes of Beyla running for 24h in OpenTelemetry demo
is around 40ms.

This represents 500ns of latency per request:

	Beyla performance calculation
	Beyla self instrumented
	Summary:

	Instrument Go applications (1, many, with and without load)
	1 process
	Summary:

	with traffic
	Summary:

	many processes
	Summary:

	with traffic
	Summary:

	Instrument non-Go applications (1, many, with and without load)
	1 process
	Summary:

	with traffic
	Summary:

	many process
	Summary:

	with traffic
	Summary:

	Full OTEL demo with traffic
	Summary:

	Different export modes (Prometheus, OTEL metrics, OTEL traces)
	Prometheus
	Summary:

	OTEL traces
	Summary:

	OTEL metrics
	Summary:

	Debug mode
	Summary:

	Network observability
	Summary:

	BPF probes latency overhead

