Deploy Grafana Phlare using the Helm chart
In March 2023, Grafana Labs acquired Pyroscope, the company behind the eponymous open source continuous profiling project. As a result, the Pyroscope and Grafana Phlare projects will be merged under the new name Grafana Pyroscope. To learn more, read our recent blog post about the news.
The Helm chart allows you to configure, install, and upgrade Grafana Phlare within a Kubernetes cluster.
Before you begin
The instructions that follow are common across any flavor of Kubernetes and assume that you know how to install, configure, and operate a Kubernetes cluster. And that you know how to use kubectl
.
Caution: Do not use this getting started procedure in a production environment.
Hardware requirements:
- A single Kubernetes node with a minimum of 4 cores and 16GiB RAM
Software requirements:
- Kubernetes 1.20 or higher
- The
kubectl
command for your version of Kubernetes - Helm 3 or higher
Verify that you have:
- Access to the Kubernetes cluster
- Persistent storage is enabled in the Kubernetes cluster, which has a default storage class set up. You can change the default StorageClass.
- DNS service works in the Kubernetes cluster
Install the Helm chart in a custom namespace
Use a custom namespace so that you do not have to overwrite the default namespace later in the procedure.
Create a unique Kubernetes namespace, for example
phlare-test
:kubectl create namespace phlare-test
For more details, see the Kubernetes documentation about Creating a new namespace.
Set up a Helm repository using the following commands:
helm repo add grafana https://grafana.github.io/helm-charts helm repo update
Note: The Helm chart at https://grafana.github.io/helm-charts is a publication of the source code at grafana/phlare.
Install Grafana Phlare using the Helm chart using one of the following options:
- Option A: Install Grafana Phlare as single binary
helm -n phlare-test install phlare grafana/phlare
- Option B: Install Grafana Phlare as micro-services
# Gather the default config for micro-services curl -LO values-micro-services.yaml https://raw.githubusercontent.com/grafana/phlare/main/operations/phlare/helm/phlare/values-micro-services.yaml helm -n phlare-test install phlare grafana/phlare --values values-micro-services.yaml
Note: The output of the command contains the query URLs necessary for the following steps, so for a micro-service setup it will look like this:
[...] The in-cluster query URL is: http://phlare-querier.phlare-test.svc.cluster.local.:4100 [...]
Check the statuses of the Phlare pods:
kubectl -n phlare-test get pods
The results look similar to this when you are in micro-services mode:
kubectl -n phlare-test get pods NAME READY STATUS RESTARTS AGE phlare-agent-7d75b4f9dc-xwpsw 1/1 Running 0 3m23s phlare-distributor-7c474947c-2p5cc 1/1 Running 0 3m23s phlare-distributor-7c474947c-xbszv 1/1 Running 0 3m23s phlare-ingester-0 1/1 Running 0 5s phlare-ingester-1 1/1 Running 0 37s phlare-ingester-2 1/1 Running 0 69s phlare-minio-0 1/1 Running 0 3m23s phlare-querier-66bf58dfcc-89gb8 1/1 Running 0 3m23s phlare-querier-66bf58dfcc-p7lnc 1/1 Running 0 3m23s phlare-querier-66bf58dfcc-zbggm 1/1 Running 0 3m23s
Wait until all of the pods have a status of
Running
orCompleted
, which might take a few minutes.
Query profiles in Grafana
Install Grafana in the same Kubernetes cluster where you installed Phlare.
helm upgrade -n phlare-test --install grafana grafana/grafana \ --set image.repository=grafana/grafana \ --set image.tag=main \ --set env.GF_FEATURE_TOGGLES_ENABLE=flameGraph \ --set env.GF_AUTH_ANONYMOUS_ENABLED=true \ --set env.GF_AUTH_ANONYMOUS_ORG_ROLE=Admin \ --set env.GF_DIAGNOSTICS_PROFILING_ENABLED=true \ --set env.GF_DIAGNOSTICS_PROFILING_ADDR=0.0.0.0 \ --set env.GF_DIAGNOSTICS_PROFILING_PORT=6060 \ --set-string 'podAnnotations.phlare\.grafana\.com/scrape=true' \ --set-string 'podAnnotations.phlare\.grafana\.com/port=6060'
For details, see Deploy Grafana on Kubernetes.
Port-forward Grafana to
localhost
, by using thekubectl
command:kubectl port-forward -n phlare-test service/grafana 3000:80
In a browser, go to the Grafana server at http://localhost:3000.
On the left-hand side, go to Configuration > Data sources.
Configure a new Grafana Phlare data source to query the Grafana Phlare server, by using the following settings:
Field Value Name Phlare URL http://phlare-querier.phlare-test.svc.cluster.local.:4100/
To add a data source, see Add a data source.
Verify success:
You should be able to query profiles in Grafana Explore, as well as create dashboard panels by using your newly configured Phlare data source.
Optional: Persistently add data source
The deployment of Grafana has no persistent database, so it will not retain settings like the data source configuration across restarts.
To ensure the data source gets provisioned at start-up, create the following datasources.yaml
file:
datasources:
phlare.yaml:
apiVersion: 1
datasources:
- name: Phlare
type: phlare
uid: phlare-test
url: http://phlare-querier.phlare-test.svc.cluster.local.:4100/
Modify the Helm deployment by running:
helm upgrade -n phlare-test --reuse-values grafana grafana/grafana \
--values datasources.yaml
Optional: Scrape your own workload’s profiles
The Phlare chart uses a default configuration that causes its agent to scrape Pods, provided they have the correct annotations. This functionality uses relabel_config and kubernetes_sd_config you might be familiar with the Prometheus or Grafana Agent config.
To get Phlare to scrape pods, you must add the following annotations to the pods:
metadata:
annotations:
profiles.grafana.com/memory.scrape: "true"
profiles.grafana.com/memory.port: "8080"
profiles.grafana.com/cpu.scrape: "true"
profiles.grafana.com/cpu.port: "8080"
profiles.grafana.com/goroutine.scrape: "true"
profiles.grafana.com/goroutine.port: "8080"
The above example will scrape the memory
, cpu
and goroutine
profiles from the 8080
port of the pod.
Each profile type has a set of corresponding annotations which allows customization of scraping per profile type.
metadata:
annotations:
profiles.grafana.com/<profile-type>.scrape: "true"
profiles.grafana.com/<profile-type>.port: "<port>"
profiles.grafana.com/<profile-type>.port_name: "<port-name>"
profiles.grafana.com/<profile-type>.scheme: "<scheme>"
profiles.grafana.com/<profile-type>.path: "<profile_path>"
The full list of profile types supported by annotations is cpu
, memory
, goroutine
, block
and mutex
.
The following table describes the annotations:
Annotation | Description | Default |
---|---|---|
profiles.grafana.com/<profile-type>.scrape | Whether to scrape the profile type. | false |
profiles.grafana.com/<profile-type>.port | The port to scrape the profile type from. | `` |
profiles.grafana.com/<profile-type>.port_name | The port name to scrape the profile type from. | `` |
profiles.grafana.com/<profile-type>.scheme | The scheme to scrape the profile type from. | http |
profiles.grafana.com/<profile-type>.path | The path to scrape the profile type from. | default golang path |
By default, the port will be discovered using named port http2
or ending with -metrics
or -profiles
.
This means that if you don’t have a named port the scraping target will be dropped.
If you don’t want to use the port name then you can use the profiles.grafana.com/<profile-type>.port
annotation to statically specify the port number.